Select Page

lab_28_data.jpg

lab_28_data__.jpg

Don't use plagiarized sources. Get Your Custom Essay on
physic lab report: Measurement of electrical resistance and Ohm’s law
Just from \$10/Page

lab_28.pdf

Unformatted Attachment Preview

Physics Laboratory Manual
n
L ABOR AT ORY
Loyd
28
Measurement of Electrical
Resistance and Ohm’s Law
OBJECTIVES
o Define the concept of electrical resistance using measurements of the voltage across and current
in a wire coil.
o Investigate the dependence of the resistance on the length, cross-sectional area, and resistivity of
the wire.
o Investigate the equivalent resistance of series and parallel resistors.
EQUIPMENT LIST
.
Resistance coils (standard set available from Sargent-Welch or Central Scientific consisting of 10 m and
20 m length of copper and German silver wire)
.
Direct current ammeter (0–2 A), direct current voltmeter (0–30 V, preferably digital readout)
.
Direct current power supply (0–20 V at 1 A)
THEORY
If a voltage V is applied across an element in an electrical circuit, the current I in the element is determined
by a quantity known as the resistance R. The relationship between these three quantities serves as a
definition of resistance.

V
I
ðEq: 1Þ
The units of resistance are volt/ampere, which are given the name ohm. The symbol for ohm is O. Some
circuit elements obey a relationship known as Ohm’s Law. For these elements the quantity R is a constant
for different values of V. If a circuit element obeys Ohm’s Law, when the voltage V is varied the current I
will also vary, but the ratio V/I should remain constant. In this laboratory we will perform measurements
on five coils of wire to investigate if they obey Ohm’s Law. We also will determine the resistance of the coils.
The resistance of any object to electrical current is a function of the material from which it is constructed, the length, the cross-sectional area, and the temperature of the object. At constant temperature
the resistance R is given by
ª 2008 Thomson Brooks/Cole, a part of TheThomson Corporation.Thomson,the Star logo, and Brooks/Cole are trademarks used herein under license. ALL RIGHTSRESERVED.No part of this work
covered by the copyright hereon may be reproduced or used in any form or by any meansçgraphic, electronic, or mechanical,including photocopying, recording, taping,web distribution, information
storage and retrievalsystems,or in any other mannerçwithout the written permission of the publisher.
279
280
Physics Laboratory Manual n Loyd
R1
R2
R3
Figure 28-1 Resistors in series.
R1
R2
R3
Figure 28-2 Resistors in parallel.
R¼r
L
A
ðEq: 2Þ
where R is the resistance (O), L is the length (m), A is the cross-sectional area (m2), and r is a constant
dependent upon the material called the resistivity (O\$ m). Actually r is a function of temperature, and if
the temperature of the coils of wire rises as a result of the current in them, this may be a source of error.
Circuit elements in an electrical circuit can be connected in series or parallel. Three resistors (R1, R2,
and R3) are connected in series as shown in Figure 28-1. For resistors in series the current is the same for all
the resistors, but the voltage drop across each resistor is different. For resistors in series the equivalent
resistance Re of the three resistors is given by
Re ¼ R1 þ R2 þ R3
ðEq: 3Þ
The same three resistors are shown connected in parallel in Figure 28-2. For resistors in parallel
the current is different in each resistor, but the voltage across each resistor is the same. In this case the
equivalent resistance Re of the three resistors in terms of the individual resistors is given by
1
1
1
1
¼
þ
þ
Re R1 R2 R3
ðEq: 4Þ
One of the objectives of this laboratory will be to observe the behavior of resistors in series and parallel.
EXPERIMENTAL PROCEDURE
1. Connect the ammeter A, the voltmeter V, and the power supply PS to the first resistor as shown
in Figure 28-3. The basic circuit is the power supply in series with a resistor. To measure the current in
the resistor, the ammeter is placed in series. To measure the voltage across the resistor, the voltmeter
is placed in parallel.
2. Vary the current through resistor R1 in steps of 0.250 A up to 1.000 A. For each specified value of the
current, measure the voltage across the resistor and record the values in Data Table 1. The resistors
will heat up and may be damaged by allowing current in them for long periods of time. Measurements
should be made quickly at each value of the current. APPLY VOLTAGE ONLY WHEN DATA ARE
BEING TAKEN.
3. Repeat Step 2 for each of the five resistors. For each resistor the ammeter must be in series with that
resistor and the power supply, and the voltmeter must be in parallel with the resistor. Record all
values in Data Table 1.
4. Connect the first four resistors in series to measure the equivalent resistance of the combination. Use
two values of current, 0.500 A and 1.000 A, and measure the value of the voltage for each of these
values of current. Record the voltage in Data Table 2.
Laboratory 28 n Measurement of Electrical Resistance and Ohm’s Law
!
Ammeter

R1

!
281
!
R2
R3
R4
R5

Power Supply
Figure 28-3 Measurement of current and voltage for resistor R1.
!
R1

R2
!
Power
” Supply
!”
Ammeter
Figure 28-4 Resistors R1 and R2 in parallel.
5. Measure the voltage across the combination of R2, R3, and R4 in series for currents of 0.500 A and
1.000 A and record the values in Data Table 2.
6. Connect R1 and R2 in parallel as shown in Figure 28-4 and measure the voltage across the combination
for current values of 0.500 A and 1.000 A and record in Data Table 2.
7. Connect R1 and R3 in parallel as shown in Figure 28-5 and measure the voltage for current values of
0.500 A and 1.000 A and record in Data Table 2.
8. Connect R2 and R3 in parallel and perform the same measurements as described in Steps 6 and 7.
Record the results in Data Table 2.
!
R1
R2

R3
!
!”
Ammeter
Figure 28-5 Resistors R1 and R3 in parallel.
Power
” Supply
282
Physics Laboratory Manual n Loyd
CALCULATIONS
1. The first four coils are made of copper with resistivity of r ¼ 1.72 & 10\$ 8 O–m. The fifth coil is made of
an alloy called German silver with resistivity of r ¼ 28.0 & 10\$ 8 O–m. The first, second, and fifth coils
are 10.0 m long, and the third and fourth coils are 20.0 m long. The diameters of the first, third, and
fifth coils are 0.0006439 m, and the diameters of the second and fourth coils are 0.0003211 m. Use these
values in Equation 2 to calculate the value of the resistance for each of the five coils and record the
results in Calculations Table 1 as the theoretical values for the resistance Rtheo.
2. If Equation 1 is solved for V, the result is V ¼ IR. There is a linear relationship between the voltage and
the current, and the slope of V versus I will be the resistance R. Perform a linear least squares fit to
the data in Data Table 1 with V as the vertical axis and I as the horizontal axis. Record in Calculations
Table 1 the slope of the fit for each resistor as the experimental value for the resistance Rexp. Also
record the value of the correlation coefficient r for each of the fits.
3. Calculate the percentage error in the values of Rexp compared to the values of Rtheo for the five resistors
and record the results in Calculations Table 1.
4. For the data of Data Table 2 calculate the values of the equivalent resistance for the various series and
parallel combinations listed in the table as the value of the measured voltage divided by the
appropriate current. Calculate and record the mean of the two trials as ðRe Þexp in Calculations Table 2.
5. Equations 3 and 4 give the theoretical expressions for equivalent resistance for series and parallel
combinations of resistance. Calculate a theoretical value for the equivalent resistance for each series
and parallel combination measured in Data Table 2. For the values of the individual resistances
R1, R2, and R3 in Equation 3 and 4, use the experimental values determined from the fit to the data on
the individual resistors. Record this theoretical value for the equivalent resistance in each case as
(Re)theo in Calculations Table 2.
6. Calculate the percentage difference between the values of ðRe Þexp and (Re)theo for each of the series and
parallel combinations measured and record the results in Calculations Table 2.
GRAPHS
1. Construct graphs of the data in Data Table 1 with V as the vertical axis and I as the horizontal axis.
Use only one piece of graph paper for all five resistors, making five small graphs on that one sheet.
Choose different scales for each graph if needed, but make the five graphs as large as possible while
still fitting on one page. Also show on each small graph the straight line for the linear least squares fit.
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
L A B O R A T O R Y 2 8
Section . . . . . . . . . . . . . . . .
Date . . . . . . . . . . . . . . . .
Measurement of Electrical Resistance and Ohm’s Law
PRE-LABORATORY ASSIGNMENT