Select Page
  

i want to summarize this research ,,1- first summarize from page 1-70 ..2- Discussion the data from page 70-133I want about 30-40 pages
report_full_2_design_final_2018_2019.pdf

Unformatted Attachment Preview

Don't use plagiarized sources. Get Your Custom Essay on
summarize acrylic acid production research
Just from $10/Page
Order Essay

PROCESS DESIGN PRACTICE
1
CHEM4007A
Report 2
Acrylic acid
By
Student’s Name 1: Ahmed Said Al-Balushi
SID: 151847
Student’s Name 2: Haitham Jumma Al Mashaikhi
SID: 151865
Student’s Name 3: Mazin Ahmed Al mamari
SID: 161054
A design project submitted to the faculty of engineering
In partial fulfillment of the requirements for
The process design course CHEM4007A&B
Faculty of Engineering
Department of Chemical Engineering
Sohar University
2018-2019
PROCESS DESIGN PRACTICE
CHEM4007A
2
Acknowledgment
We would like to thank and appreciate the help and contribution of everyone who helped us to
finish this project successfully. We would like to specially thank Dr. Youssef for his continuous
help and gaudiness throughout the semester.
PROCESS DESIGN PRACTICE
CHEM4007A
3
Executive summary
This report is going to discuss the process of producing acrylic acid through designing a detailed
simulation of each equipment of the process. The process contains various equipment‟s starting
from a gas compressor and going through a reactor, absorption columns, a distillation column,
heat exchangers and pumps. Each equipment detailed design will be performed individually a
long with the short cut design of the equipment. Besides that, a survey of each equipment is
written showing how the equipment works and a discussion on its classifications. Finally, a
comparison of the calculated data will be provided to show the percentage of error through
comparing the simulation calculated data and the data obtained from references.
PROCESS DESIGN PRACTICE
CHEM4007A
4
Table of Contents
Acknowledgment ……………………………………………………………………………………………………………. 2
Executive summary…………………………………………………………………………………………………………. 3
Table of Figures: …………………………………………………………………………………………………………….. 8
Chapter 1 ……………………………………………………………………………………………………………………… 11
1.1 Reactor: ………………………………………………………………………………………………………………….. 11
1.1.1 Batch reactors: …………………………………………………………………………………………………… 11
1.1.2 Continuous reactor: ……………………………………………………………………………………………. 12
1.1.3 Types of continuous reactors: ……………………………………………………………………………… 13
1.1.4 Tubular reactors…………………………………………………………………………………………………. 13
1.1.5 Fixed bed reactor: ………………………………………………………………………………………………. 14
1.1.6 Fluid bed reactors: ……………………………………………………………………………………………… 15
1.1.7 Stirred tank reactor (CSTR): ……………………………………………………………………………….. 16
1.1.8 Real application: ………………………………………………………………………………………………… 18
1.2 Distillation column: …………………………………………………………………………………………………. 19
1.2.1 Definition & process description: ………………………………………………………………………… 19
1.2.2 Uses of Distillation:……………………………………………………………………………………………. 20
Distillation of crude oil ………………………………………………………………………………………………. 21
1.2.3 Flash distillation: ……………………………………………………………………………………………….. 26
1.2.4 Rectification: …………………………………………………………………………………………………….. 27
1.3 Heat Exchangers: …………………………………………………………………………………………………….. 31
1.3.1 Double pipe heat exchangers: ……………………………………………………………………………… 31
1.3.2 Shell and tube heat exchangers: …………………………………………………………………………… 32
1.2.3 Plate type heat exchangers. …………………………………………………………………………………. 33
1.2.4 Air-cooled heat exchangers. ………………………………………………………………………………… 34
1.2.5 Theory of heat exchangers: …………………………………………………………………………………. 34
1.2.6 Reasons for using heat exchanger: ……………………………………………………………………….. 36
1.2.7 Applications of heat exchanger: …………………………………………………………………………… 36
1.2.8 Types of applications: ………………………………………………………………………………………… 36
1.4 Extraction ……………………………………………………………………………………………………………….. 37
1.4.1 Definition: ………………………………………………………………………………………………………… 37
1.4.2 Choice of solvent ……………………………………………………………………………………………….. 39
…………………………………………………………………………………………………………………………….. 39
PROCESS DESIGN PRACTICE
CHEM4007A
5
Phase Equilibria ……………………………………………………………………………………………………… 41
1.4.3 Contactors: ……………………………………………………………………………………………………….. 41
1.4.4 Factors for contactors design: ……………………………………………………………………………… 44
Industrial extraction operations ………………………………………………………………………………… 49
1.5 Absorber:………………………………………………………………………………………………………………… 50
1.5.1: Definition: ……………………………………………………………………………………………………….. 50
1.5.2 TYPES OF ABSORPTION ………………………………………………………………………………… 51
Physical absorption: …………………………………………………………………………………………………… 51
Chemical absorption:………………………………………………………………………………………………….. 51
1.6 flash ……………………………………………………………………………………………………………………….. 54
1.7 Pumps:……………………………………………………………………………………………………………………. 55
1.7.1 Definition: ………………………………………………………………………………………………………… 55
1.7.2 Positive displacement pumps ………………………………………………………………………………. 57
1.7.3 Kinetic pump: ……………………………………………………………………………………………………. 60
1.7.4 Centrifugal pump……………………………………………………………………………………………….. 61
1.7.5 ENTRIFUGAL PUMPS……………………………………………………………………………………… 61
1.7.6 CENTRIFUGAL FORCE …………………………………………………………………………………… 62
1.7.7 Regenerative pumps …………………………………………………………………………………………… 65
1.7.8 Electromagnetic pumps ………………………………………………………………………………………. 66
1.8 Compressors:…………………………………………………………………………………………………………… 68
1.8.1 Definition: ………………………………………………………………………………………………………… 68
1.8.2 Types of Compressors ………………………………………………………………………………………… 68
1.8.3 Principle of Compressors ……………………………………………………………………………………. 70
1.8.4 Applications of Compressors ………………………………………………………………………………. 71
Chapter 2 ……………………………………………………………………………………………………………………… 72
2.1 Reactor design. ………………………………………………………………………………………………………… 72
2.1.1 Reaction and reaction kinetic: ……………………………………………………………………………… 72
2.1.2 HYSYS simulation of reactor ……………………………………………………………………………… 73
2.1.3 Simulation and results from shortcut: …………………………………………………………………… 75
2.1.4 Reactor graphs. ………………………………………………………………………………………………….. 77
2.1.4.1 Molar flow vs Reactor length. …………………………………………………………………………… 77
2.1.4.2 Temperature effects vs conversion (Rxn1 and Rxn2) …………………………………………… 78
2.1.4.3 Temperature VS total conversion:……………………………………………………………………… 79
2.1.4.4 PFR volume VS conversion: …………………………………………………………………………….. 80
PROCESS DESIGN PRACTICE
CHEM4007A
6
2.1.4.5 PFR volume VS conversion (Rxn1 and Rxn2): …………………………………………………… 81
2.1.4.6 PFR volume VS conversion (Rxn1):………………………………………………………………….. 82
2.2 Distillation: …………………………………………………………………………………………………………….. 83
2.2.1 (T-303) simulation: ……………………………………………………………………………………………. 83
2.2.2 Comparison: ……………………………………………………………………………………………………… 84
2.2.3 Distillation graphs: …………………………………………………………………………………………….. 86
2.2.3.1 Temperature vs Tray Position from top. …………………………………………………………….. 86
2.2.3.2 Pressure vs Tray position from top. …………………………………………………………………… 87
2.2.3.3 Pressure vs Tray position from top. …………………………………………………………………… 88
2.2.3.4 Pressure vs Tray position from top. …………………………………………………………………… 89
Design for distillation tower (T-303): …………………………………………………………………………… 90
2.3 absorption tower………………………………………………………………………………………………………. 91
2.3.1 Absorption tower (T-301). ………………………………………………………………………………….. 91
2.3.1.1 Simulation results for absorber (T-301): …………………………………………………………….. 91
2.3.1.2 Comparison for (T-301) results. ………………………………………………………………………… 92
2.3.1.3 T-301 graphs: ………………………………………………………………………………………………… 94
2.3.1.3.1 Temperature vs tray position from top T-301. ………………………………………………….. 94
2.3.1.3.2 Pressure vs tray position from top T-301. ………………………………………………………… 95
2.3.1.3.3 Flow vs tray position from top T-301. …………………………………………………………….. 96
2.3.1.3.4 Column properties vs tray position from top T-301. ………………………………………….. 97
2.3.1.3.5 Composition vs tray position from top. ……………………………………………………………. 98
2.3.1.3.6 K-values vs tray position from top. …………………………………………………………………. 99
2.3.2 Absorption tower (T-302): ………………………………………………………………………………… 101
2.3.2.2 Simulation results comparison (T-301): ……………………………………………………………. 102
Discussion for tower T-302:………………………………………………………………………………………. 103
2.3.2.3 T-301 Graphs: ………………………………………………………………………………………………. 104
2.3.2.3.1 Temperature vs Tray position from top (T-301): …………………………………………….. 104
2.3.2.3.2 Pressure vs Tray position from top (T-301): …………………………………………………… 105
2.3.2.3.3 Composition vs Tray position from top (T-301): …………………………………………….. 106
2.4 Pumps simulations: ………………………………………………………………………………………………… 107
2.4.1 Simulation for pump (P-301 A/B) molten salt: …………………………………………………….. 107
2.4.1.1 Electric motor vs S for pump (P-304 A/B) molten salt:………………………………………. 108
2.4.2 Simulation for pump (P-302 A/B):……………………………………………………………………… 109
2.4.3 Simulation for pump (P-303 A/B):……………………………………………………………………… 110
PROCESS DESIGN PRACTICE
CHEM4007A
7
2.4.4 Simulation for pump (P-304 A/B):……………………………………………………………………… 111
2.5 Compressor: ………………………………………………………………………………………………………….. 112
2.6 Heat exchangers: ……………………………………………………………………………………………………. 113
2.6.2 E-302 ……………………………………………………………………………………………………………… 116
2.6.3 E-303 ……………………………………………………………………………………………………………… 118
2.6.3.1 Heat Exchanger (E-303) specification sheet: …………………………………………………….. 120
2.6.3.2 Layout parameters ( Pitch , passes) ………………………………………………………………….. 122
2.6.3.3 Discussion E-303 results: ……………………………………………………………………………….. 122
2.6.3.3 Cold and hot stream temperatures: …………………………………………………………………… 123
2.6.3.4 Heat flow vs Temperature E-303. ……………………………………………………………………. 124
2.6.3.5 Temperature vs pressure for tube side E-303 …………………………………………………….. 125
2.6.3.6 Temperature vs pressure for shell side E-303: …………………………………………………… 126
2.6.4 E-304 ……………………………………………………………………………………………………………… 128
2.6.5 E-305 ……………………………………………………………………………………………………………… 130
Chapter 3 ……………………………………………………………………………………………………………………. 132
Conclusion …………………………………………………………………………………………………………………. 132
References: …………………………………………………………………………………………………………………. 133
PROCESS DESIGN PRACTICE
CHEM4007A
8
Table of Figures:
Figure 1 Batch ………………………………………………………………………………………………………………. 11
Figure 2 Continuous reactor……………………………………………………………………………………………. 12
Figure 3 Fixed bed reactor ……………………………………………………………………………………………… 14
Figure 4 Fluid bed reactors …………………………………………………………………………………………….. 15
Figure 5 Stirred tank reactor (CSTR): ……………………………………………………………………………… 16
Figure 6 Stirred tank reactor (CSTR) 2…………………………………………………………………………….. 17
Figure 7 Chemical engineering schematic of a continuous fractionating column …………………… 20
Figure 8 Trays in a fractionating column. …………………………………………………………………………. 22
Figure 9 Valve trays ………………………………………………………………………………………………………. 23
Figure 10 Vapor-liquid equilibrium conditions (VLE) ……………………………………………………….. 24
Figure 11 Flash distillation …………………………………………………………………………………………….. 26
Figure 12: Rectification …………………………………………………………………………………………………. 28
Figure 13 : Double pipe heat exchangers ………………………………………………………………………….. 31
Figure 14: Shell and tube heat exchangers ……………………………………………………………………….. 32
Figure 15: Plate type heat exchangers ……………………………………………………………………………… 33
Figure 16: Air-cooled heat exchangers …………………………………………………………………………….. 34
Figure 17: parallel flow, counter flow and cross flow ………………………………………………………… 35
Figure 18: Extraction …………………………………………………………………………………………………….. 37
Figure 19: Extraction 2 ………………………………………………………………………………………………….. 39
Figure 20: Extraction of solute C from A using solvents B and B’ ………………………………………. 40
Figu …
Purchase answer to see full
attachment

Order your essay today and save 10% with the discount code ESSAYHSELP